engine coolant SUZUKI SWIFT 2000 1.G SF310 Service Owner's Manual

Page 122 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-71
1. Throttle body
2. Fuel feed hose
GoodNo good1. Injector connector
STEPACTIONYESNO
6Check PCV valve for clogging (See Section 6E1).
Is it in good condition?Go to Step 7.Replace PCV valve.
7Check EVAP Canister Purge Valve for Closing.
1) Disconnect purge hose (1) from EVAP canister.
2) Place finger against the end of disconnected hose.
3) Check that vacuum is not felt there, when engine is
cool and running at idle. See Fig. 5.
Is vacuum felt?Check EVAP
control system
(See Section 6E1).Go to Step 8.
8Check intake manifold pressure sensor for performance
(See Section 6E1).
Is it in good condition?Go to Step 9.Repair or replace.
9Check engine coolant temp. sensor for performance
(See Section 6E1).
Is it in good condition?Go to Step 10.Replace engine
coolant temp.
sensor.
10Check parts or system which can cause engine rough
idle or poor performance.
–Engine compression (See Section 6A).
–Valve lash (See Section 6A).
–Valve timing (Timing belt installation. See Section 6A).
Are they in good condition?Check wire harness
and connection of
ECM (PCM) ground,
ignition system and
fuel injector for
intermittent open
and short.Repair or replace.
Fig. 1 for Step 3 Fig. 2 for Step 3 Fig. 3 for Step 4
Fig. 4 for Step 5 Fig. 5 for Step 7

Page 128 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-77
1) 2) 3) 4) 35 – 45 mph
(55 – 65 km / h)
30 – 40 mph
(50 – 60 km / h)
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and tester, on a level road.
1) Turn ignition switch OFF.
Clear DTC with ignition switch ON, check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Ambient temp.: –10C, 14F or higher
–Intake air temp.: 70C, 158F or lower
–Engine coolant temp.: 70 – 11 0C, 158 – 230F
2) Start engine and drive vehicle at 40 – 47 mph, 65 – 75 km / h for 15 min. or longer.
While this driving, if “Catalyst Monitoring TEST COMPLETED” is displayed in “READINESS TESTS” mode and
DTC is not displayed in “DTC” mode, confirmation test is completed.
If “TEST NOT COMPLTD” is still being displayed, continue test driving.
3) Decrease vehicle speed at 28 – 34 mph, 45 – 55 km / h, and hold throttle valve at that opening position for 2 min.
and confirm that short term fuel trim vary within –20% –+20% range.
4) Stop vehicle (do not turn ignition switch OFF) and confirm test results according to following “Test Result Con-
firmation Flow Table”.
Test Result Confirmation Flow Table
STEPACTIONYESNO
1Check DTC in “DTC” mode and pending DTC in
“ON BOARD TEST” or “PENDING DTC” mode.
Is DTC or pending DTC displayed?Proceed to applicable
DTC Diag. Flow Table.Go to Step 2.
2Set scan tool to “READINESS TESTS” mode and
check if testing has been completed.
Is test completed?No DTC is detected
(confirmation test is
completed).Repeat DTC
confirmation
procedure.

Page 131 of 557

6-80 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Fig. 1 for Step 1
Main
fuseIgnition switch“IG COIL METER”
Radiator fan
relay
Radiator fan motor
DTC P0480 RADIATOR FAN CONTROL SYSTEM MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
Low voltage at terminal C02-20 when engine coolant
temp. is below 91C, 195F.
2 driving cycle detection logic, continuous monitoring.“B/W” or “BI” circuit open or short
Radiator fan relay malfunction
ECM (PCM) malfunction
DTC CONFIRMATION PROCEDURE
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON.
3) Warm up engine until radiator cooling fan starts to operate.
4) Check pending DTC in “ON BOARD TEST” or “PENDING DTC” mode and DTC in “DTC” mode.

Page 132 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-81
Fig. 1 for Step 2 Fig. 2 for Step 3
1. Radiator fan relay
2. Relay box
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check Radiator Cooling Fan Relay and Its Circuit.
1) Turn ignition switch ON.
2) Check for voltage at terminal C02-20 of ECM
(PCM) connector connected, under following
condition. See Fig. 1.
When engine coolant temp. is lower than
96C, 205F and A / C switch turns OFF:
10 – 14 V
Is voltage as specified?Intermittent trouble or
faulty ECM (PCM).
Check for intermittent
referring to “Intermittent
and Poor Connection”
in Section 0A.Go to Step 3.
3Check Radiator Fan Control Relay.
1) Turn ignition switch OFF and remove radiator
fan relay.
2) Check for proper connection to the relay at
“B/W” and “Bl” wire terminals.
3) If OK, then measure resistance between
terminals a and b. See Fig. 2.
Is it 100 – 120 Ω?“B/W” or “Bl” circuit
open or short.
If wires and connections
are OK, substitute a
known-good ECM (PCM)
and recheck.Replace radiator fan
relay.

Page 142 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-91
1. Relay box
2.“PTC”
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check EFE Heater and Its Circuit.
Check for voltage at terminal C01-12 of ECM (PCM)
connector connected, under following each
condition.
During engine warming up (Coolant temp.:
Below 80C, 176F, Engine speed: Over 750 r / min):
Over 1.0 V
After warming up: Below 1.0 V
Is each voltage as specified?Intermittent trouble.
Check for intermittent
referring to
“Intermittent and Poor
Connection” in
Section 0A.Go to Step 3.
3Check EFE Heater Relay.
1) Turn OFF ignition switch and remove EFE heater
relay (“PTC”). See Fig. 2.
2) Check for proper connection to relay at terminal
3 and 4. See Fig. 3.
3) Check resistance between each two terminals.
Between terminals 1 and 2: Infinity
Between terminals 3 and 4: 100 – 120 Ω
4) Check that there is continuity between terminals
1 and 2 when battery is connected to terminals
3 and 4. See Fig. 4.
Is EFE heater relay in good condition?Go to Step 4.Replace EFE heater
relay.
4Check EFE Heater and Its Circuit.
1) Turn ignition switch OFF and disconnect ECM
(PCM) connectors.
2) Check for proper connection to ECM (PCM) at
terminals C02-25 and C01-12.
3) If OK, then measure resistance between terminal
C01-12 and ground.
Is it 0.5 – 30 Ω at 20C (68F)?“W”, “Y/R” or “W/B”
circuit open or short.
If wire and
connections are OK,
substitute a known-
good ECM (PCM) and
recheck.“W/B” circuit open or
short.
If wire and
connections are OK,
replace EFE heater.
Fig 1. for Step 4 Fig. 2 for Step 3 Fig. 3 for Step 3
Fig. 4 for Step 3

Page 163 of 557

An Example of Freeze Frame Data
1. Trouble Code P0102 (1st)
2. Engine Speed 782 RPM
3. Eng Cool Tmp. 80C
4. Vehicle Spd. 0 km/h
5. MAP Sensor 39 kPa
6. St. Term FT1– 0.8% Lean
7. Lg. Term FT1– 1.6% Lean
8. Fuel 1 Stat. Closed Loop
9. Fuel 2 Stat. Not used
10. Load value 25.5%
1st, 2nd or 3rd in parentheses here represents which
position in the order the malfunction is detected.
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-7
Warm-up Cycle
A warm-up cycle means sufficient vehicle operation such that the
coolant temperature has risen by at least 22C (40F) from engine
starting and reaches a minimum temperature of 70C (160F).
Driving Cycle
A “Driving Cycle” consists of engine startup and engine shutoff.
2 Driving Cycle Detection Logic
The malfunction detected in the first driving cycle is stored in ECM
(PCM) memory (in the form of pending DTC and freeze frame data)
but the malfunction indicator lamp does not light at this time. It lights
up at the second detection of same malfunction also in the next driv-
ing cycle.
Pending DTC
Pending DTC means a DTC detected and stored temporarily at 1
driving cycle of the DTC which is detected in the 2 driving cycle
detection logic.
Freeze Frame Data
ECM (PCM) stores the engine and driving conditions (in the from
of data as shown at the left) at the moment of the detection of a mal-
function in its memory. This data is called “Freeze frame data”.
Therefore, it is possible to know engine and driving conditions (e.g.,
whether the engine was warm or not, where the vehicle was running
or stopped, where air / fuel mixture was lean or rich) when a mal-
function was detected by checking the freeze frame data. Also,
ECM (PCM) has a function to store each freeze frame data for three
different malfunctions in the order as the malfunction is detected.
Utilizing this function, it is possible to know the order of malfunctions
that have been detected. Its use is helpful when rechecking or diag-
nosing a trouble.
Priority of freeze frame data:
ECM (PCM) has 4 frames where the freeze frame data can be
stored. The first frame stores the freeze frame data of the malfunc-
tion which was detected first. However, the freeze frame data
stored in this frame is updated according to the priority described
below. (If malfunction as described in the upper square “1” below
is detected while the freeze frame data in the lower square “2” has
been stored, the freeze frame data “2” will be updated by the freeze
frame data “1”.)
PRIORITY
FREEZE FRAME DATA IN FRAME 1
1
Freeze frame data at initial detection of malfunction
among misfire detected (P0300-P0304), fuel
system too lean (P0171) and fuel system too rich
(P0172)
2Freeze frame data when a malfunction other than
those in “1” above is detected

Page 171 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-15
DIAGNOSTIC TROUBLE CODE (DTC) TABLE
NOTE:
1 driving cycle: MIL lights up when DTC is detected in the first driving cycle.
2 driving cycles: MIL lights up when the same DTC is detected also in the next driving cycle after DTC is
detected and stored temporarily in the first driving cycle.
DTC
NO.
DETECTING ITEMDETECTING CONDITION
(DTC will set when detecting:)MIL
P0105Manifold absolute pressure
circuit malfunction
Low pressure-high vacuum-low voltage (or MAP
sensor circuit shorted to ground)
High pressure-low vacuum-high voltage (or MAP
sensor circuit open)
1 driving
cycle
P0110Intake air temp. circuit
malfunctionIntake air temp. circuit low input
Intake air temp. circuit high input1 driving
cycle
P0115Engine coolant temp. circuit
malfunctionEngine coolant temp. circuit low input
Engine coolant temp. circuit high input1 driving
cycle
P0120Throttle position circuit
malfunctionThrottle position circuit low input
Throttle position circuit high input1 driving
cycle
P0121Throttle position circuit
performance problemPoor performance of TP sensor2 driving
cycles
P0130HO2S circuit malfunction
(Sensor-1)
Min. output voltage of HO2S-higher than
specification
Max. output voltage of HO2S-lower than
specification
2 driving
cycles
P0133HO2S circuit slow response
(Sensor-1)Response time of HO2S-1 output voltage between
rich and lean is longer than specification.2 driving
cycles
P0134HO2S circuit no activity detected
(Sensor-1)Output voltage of HO2S-1 fails to go specification.
(or HO2S-1 circuit open or short)2 driving
cycles
P0135HO2S heater circuit malfunction
(Sensor-1)Terminal voltage is lower than specification at heater
OFF or it is higher at heater ON.2 driving
cycles
P0136HO2S circuit malfunction
(Sensor-2)Max. voltage of HO2S-2 is lower than specification
or its min. voltage is higher than specification2 driving
cycles
P0141HO2S heater circuit malfunction
(Sensor-2)Terminal voltage is lower than specification at heater
OFF or it is higher at heater ON. (or heater circuit or
short)2 driving
cycles
P0171Fuel system too lean
Short term fuel trim or total fuel trim (short and long
terms added) is larger than specification for specified
time or longer. (fuel trim toward rich side is large.)2 driving
cycles
P0172Fuel system too rich
Short term fuel trim or total fuel trim (short and long
term added) is smaller than specification for
specified time or longer. (fuel trim toward lean side is
large.)
2 driving
cycles
P0300
P0301
P0302
P0303Random misfire detected
Cylinder 1 misfire detected
Cylinder 2 misfire detected
Cylinder 3 misfire detectedMisfire of such level as to cause damage to three
way catalyst
MIL
flashing
during
misfire
detection
P0304
y
Cylinder 4 misfire detectedMisfire of such level as to deteriorate emission but
not to cause damage to three way catalyst2 driving
cycles

Page 174 of 557

6-1-18 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
FAIL-SAFE TABLE
When any of the following DTCs is detected, ECM (PCM) enters fail-safe mode as long as malfunction continues
to exist but that mode is canceled when ECM (PCM) detects normal condition after that.
DTC NO.
DETECTED ITEMFAIL-SAFE OPERATION
P0105Manifold absolute pressure circuit
malfunction
ECM (PCM) uses value determined by throttle
opening and engine speed.
ECM (PCM) stops EGR, EVAP purge and idle air
control.
P0110Intake air temp. circuit malfunctionECM (PCM) controls actuators assuming that
intake air temperature is 20C (68F).
P0115Engine coolant temp. circuit malfunctionECM (PCM) controls actuators assuming that
engine coolant temperature is 80C (176F).
P0120Throttle position circuit malfunctionECM (PCM) controls actuators assuming that
throttle opening is 20.
P0340Camshaft position sensor circuit
malfunctionECM (PCM) controls injection system sequential
injection to synchronous injection.
P0500Vehicle speed sensor malfunctionECM (PCM) stops idle air control.
P1450Barometric pressure sensor low /
high inputECM (PCM) controls actuators assuming that
barometric pressure is 100 kPa (760 mmHg).

Page 175 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-19
Operation
VISUAL INSPECTION
Visually check following parts and systems.
INSPECTION ITEM
REFERRING SECTION
Engine oil ––––– level, leakage
Engine coolant ––––– level, leakage
Fuel ––––– level, leakage
A / T fluid ––––– level, leakage
Air cleaner element ––––– dirt, clogging
Battery ––––– fluid level, corrosion of terminal
Water pump belt ––––– tension, damage
Throttle cable ––––– play, installation
Vacuum hoses of air intake system ––––– disconnection,
looseness, deterioration, bend
Connectors of electric wire harness ––––– disconnection, friction
Fuses ––––– burning
Parts ––––– installation, bolt ––––– looseness
Parts ––––– deformation
Other parts that can be checked visually
Also check following items at engine start, if possible
Malfunction indicator lamp
Charge warning lamp
Engine oil pressure warning lamp
Engine coolant temp. meter
Fuel level meter
Tachometer, if equipped
Abnormal air being inhaled from air intake system
Exhaust system ––––– leakage of exhaust gas, noise
Other parts that can be checked visuallySection 0B
Section 0B
Section 0B
Section 0B
Section 0B
Section 0B
Section 6E2
Section 8
Section 6
Section 6H
Section 8 (Section 6 for pressure check)
Section 8
Section 8

Page 185 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-29
SCAN TOOL DATA
As the data values given below are standard values estimated on the basis of values obtained from the normally
operating vehicles by using a scan tool, use them as reference values. Even when the vehicle is in good condition,
there may be cases where the checked value does not fall within each specified data range. Therefore, judgment
as abnormal should not be made by checking with these data alone.
Also, conditions in the below table that can be checked by the scan tool are those detected by ECM (PCM) and
output from ECM (PCM) as commands and there may be cases where the engine or actuator is not operating (in
the condition) as indicated by the scan tool. Be sure to use the timing light to check the ignition timing.
NOTE:
With the generic scan tool, only star () marked data in the table below can be read.
When checking the data with the engine running at idle or racing, be sure to shift M / T gear to the neutral
gear position and A / T gear to the “Park” position and pull the parking brake fully. Also, if nothing or “no
load” is indicated, turn OFF A / C, all electric loads, P / S and all the other necessary switches.
SCAN TOOL DATAVEHICLE CONDITIONNORMAL CONDITION /
REFERENCE VALUES
FUEL SYSTEM B1 (FUEL
SYSTEM STATUS)At specified idle speed after warming upCLOSED
(closed loop)

CALC LOAD
(CALCULATED LOADAt specified idle speed with no load after
warming up3 – 9%(
VALUE)At 2500 r / min with no load after warming up12 – 17%

COOLANT TEMP.
(ENGINE COOLANT
TEMP.)
At specified idle speed after warming up85 – 100C,
185 – 212F
SHORT FT BI (SHORT
TERM FUEL TRIM)At specified idle speed after warming up–20 – +20%
LONG FT BI (LONG
TERM FUEL TRIM)At specified idle speed after warming up–15 – +15%

MAP (INTAKE
MANIFOLD ABSOLUTE
PRESSURE)At specified idle speed with no load after
warming up24 – 37 kPa,
180 – 280 mmHg
ENGINE SPEEDAt idling with no load after warming up
Desired
idle speed
± 50 r / min
VEHICLE SPEEDAt stop0 km / h, 0 MPH

IGNITION ADVANCE
(IGNITION TIMING
ADVANCE FOR NO.1
CYLINDER)
At specified idle speed with no load after
warming up9 – 15 BTDC
INTAKE AIR TEMP.At specified idle speed after warming upAmbient +35C (95F)
temp.–5C (23F)
MAF (MASS AIR FLOW
RATE)
At specified idle speed with no load after
warming up0 – 4 gm / sec
RATE)At 2500 r / min with no load after warming up4 – 9 gm / sec

THROTTLE POS
(ABSOLUTE
Ignition switch
ON / engineThrottle valve fully closed7 – 18%
(ABSOLUTE
THROTTLE POSITION)
ON / engine
stoppedThrottle valve fully open70 – 100%
O2S B1 S1 (HEATED
OXYGEN SENSOR-1)At specified idle speed after warming up0.05 – 0.95 V
O2S B1 S2 (HEATED
OXYGEN SENSOR-2)When engine is running at 2000 r / min. for
3 min or longer after warming up.0 – 0.95 V
O2S FT B1 S1At specified idle speed after warning up–20 – +20%
DIS. WITH MIL ON————

Page:   < prev 1-10 11-20 21-30 31-40 41-50 51-60 61-70 ... 80 next >